

说明书

高敏 ECL 化学发光底物试剂盒

High Sensitive ECL Chemiluminescent Substrate Kit

产品介绍

高敏 ECL 化学发光底物试剂盒是一种价格性价比高的入门级辣根过氧化物酶(HRP)增强化学发光(ECL)底物,可靠性和性能与其他标准 ECL 底物相当,可检测 HRP 酶活性。它可以检测纳克级及皮克级别上的抗原量,并允许使用照相或其他成像方法轻松检测 HRP。无需重新优化条件即可直接替代价格更昂贵的产品。

特点

- 性价比高,可靠性强。
- 具有高灵敏度,可检测纳克级及皮克级别以上的抗原量。
- 可在日光灯下进行发光操作,短时间暴露于实验室常规照明不会损害该工作液。
- 发光持续时间长,信号可持续1至2小时。
- 兼容性: 硝化纤维素和聚偏氟乙烯膜。
- 稳定性高,抗干扰能力强。

储存事项

冰袋运输,短时间内可室温运输,但需避免光源热源,长时间储存于 4℃避光保存,有效期 24 个月。

注意事项

- △ A 液和 B 液在吸取过程中必须更换枪头,两种溶液相互污染后会导致逐渐失效,影响后续的使用效果。
- △ 使用过程中,建议现配现用,配制后室温放置数小时后灵敏度会降低。
- △ 各溶液使用后,请盖紧瓶盖,以防失效,如有条件,可以收到货第一时间分装成小规格,避免每次开盖增加曝光及 挥发频率。
- △ 不同级别 ECL 的荧光持续时间不同,一般开始反应后的 30 分钟内荧光更强一些,因此请注意充分利用这荧光较强的 30 分钟进行压片。
- △ 为获得最佳显色效果,必须优化该系统的全部组分,包括样品量、一抗和二抗浓度以及膜和封闭试剂的类型。
- △ 使用该产品比使用沉淀比色 HRP 底物检测所需的抗体浓度低,为优化抗体浓度,请进行一次系统斑点印迹分析。
- △ 封闭试剂有可能与抗体产生交叉反应,导致出现非特异性信号,封闭缓冲液同时也会影响系统的灵敏性,当从一种底物转换为另一种底物时,有时会出现信号衰减或背景增加的现象,原因可能是封闭缓冲液不适合新的检测系统。
- △ 使用亲和素/生物素检测系统时,避免使用脱脂奶粉(含内源性生物素),推荐无蛋白封闭液,否则会导致高背景信号。
- 保证洗涤缓冲液、封闭缓冲液、抗体溶液和底物工作液的使用体积,以确保在整个实验过程中印迹膜完全被液体覆盖,避免膜变干。增大封闭缓冲液及洗涤缓冲液的使用量可以降低非特异性的信号。
- △ 为获得最佳效果,在孵育步骤请使用摇床。
- △ 将 Tween20(终浓度 0.05% ~ 0.1%)加入封闭缓冲液和稀释的抗体溶液,以降低非特异信号。
- △ 不要使用叠氮化钠(NaN。)作为缓冲液的防腐剂,叠氮化钠是 HRP 的抑制物。
- △ 避免手与膜直接接触,实验过程应戴手套或使用干净的镊子。
- △ 使用本产品的抗体参考稀释范围:

一抗稀释范围为 1 mg / mL 原液	二抗稀释范围为 1 mg / mL 原液
1:1,000-1:5,000 或 0.2-1.0 μg/mL	1:1,000-1:15,000 或 0.07-1μg/mL

准备材料

已完成转印的印迹膜:使用任何合适的电泳法分离蛋白质,并将这些蛋白质转移到硝酸纤维素膜上,也可使用其他 类型的膜,但操作步骤可能需要进行优化。

用于处理放射显影胶片的胶片暗盒、显影和定影试剂。

用于孵育的旋转摇床

其他试剂

稀释缓冲液:使用 Tris 或磷酸盐缓冲液。

洗涤缓冲液: 将 5 mL 10%的 Tween-20 加入 1000 mL 稀释缓冲液 (Tween-20 的终浓度为 0.05%)。

封闭试剂:将 0.5 mL10%的 Tween-20 加入 100 mL 的封闭缓冲液,选择一种与稀释缓冲液具有相同基本组分的封闭缓冲液。

一抗: 选择一种目标蛋白质特异性抗体,使用稀释缓冲液制备该抗体的 1 mg/mL 储液。使用封闭试剂将抗体从储液稀释成抗体工作液。稀释度介于 1:1,000 和 1:5,000 之间或抗体工作液浓度为 0.2-1 μg/mL。最佳稀释度取决于一抗和膜上的抗原量。

HRP 标记的二抗:选择一种与二抗特异性结合的 HRP 标记二抗,使用稀释缓冲液制备该抗体的 1 mg/mL 储备液。使用封闭试剂将抗体从储备液稀释成抗体工作液。稀释度介于 1:1,000 和 1:15,000 之间或抗体工作液浓度为 0.7-1 μ g/mL。该浓度范围在使用链亲和素-HRP 时也适用。二抗的最佳稀释度取决于 HRP 标记二抗和膜上的抗原量。

操作步骤

1. 进行蛋白质印迹操作流程

- (1) 将印记膜从蛋白转印设备中取出,加入合适的封闭液在温室下孵育20~60分钟,同时振荡。
- (2) 将膜从封闭液中取出,与一抗工作液在室温孵育1小时,同时振荡或在2-8℃孵育过夜,不振荡。
- (3) 用适当的缓冲液充分洗涤印迹膜。(将足量的洗涤缓冲液加至膜上,保证缓冲液将膜完全覆盖,振荡孵育≥5分钟,更换洗涤缓冲液并重复该步骤 4~6次。增加洗涤缓冲液体积,洗涤次数和洗涤时间有助于降低背景信号)
- (4) 用 0.7-1µg/mL 二抗孵育印迹膜约 30~60 分钟
- (5) 重复步骤 3,以除去未结合的 HRP 标记二抗(膜与 HRP 标记二抗孵育后必须进行彻底洗涤)
- (6) 通过混合等份的本产品溶液 A 和本产品溶液 B 来制备发光工作溶液。根据膜大小,每平方厘米印记膜使用 0.1 mL 发光工作溶液。已配制的工作溶液在室温下可稳定保存 6 小时。(注:暴露于日光或任何其他强光下可能损害工作液,为获得最佳结果,将此工作液保存在琥珀色瓶中,并避免长期暴露于任何强光,实验室的常见照明不会损害工作液的稳定性)
- (7) 将印迹膜置于新配置的工作溶液中,确保使工作液均匀覆盖在膜上,孵育5分钟
- (8) 取膜,弃工作液,用吸水纸略吸去过多的液体。
- (9) 将印迹膜放在透明的塑料包装或薄片保护膜中,去除气泡,随后进行压片检测或化学发光成像仪检测。

2. 获取图像

(1) 将包在塑料纸(膜)中的印记膜置于胶片暗盒中,蛋白质面朝上,除适用于胶片曝光的灯(如红色安全灯) 之外,关闭所有的灯。

*注:胶片必须在曝光期间保持干燥,为获得最佳效果,采取以下措施:

- a. 确保将多余的底物溶液从膜和塑料纸上完全去除。
- b. 在整个胶片处理期间,使用手套。
- C. 切莫将印记膜置于已显影的胶片上,因为胶片上的化学物质会减弱信号。
- (2) 将 X 光胶片置于膜的上面。建议第一次曝光 60 秒。之后可调整曝光时间以达到最佳结果。化学发光反应在底物孵育后的前 5~30 分钟期间是最强烈的,这一反应可以持续几个小时,但强度会随时间下降,如有底物孵育后较长时间后曝光,曝光时间可能需要延长以获得较强信号。如果使用磷光存储成像设备(如 Bio-Rad 的分子成像仪系统)或 CCD 照相机可能需要较长的曝光时间。

△警告: 胶片与膜之间的任何移动可能在胶片上造成人为的非特异信号。

(3) 使用合适的显影剂和定影剂对胶片进行显影。如果信号太强,则缩短曝光时间或将印记膜进行剥离并降低抗体浓度重新检测。警告:胶片与膜之间的任何移动可能在胶片上造成人为的非特异信号。

常见问题指南

现 象	可能的原因	建议的措施
胶片上的反转图像(即黑色背景 上的白色条带)	系统中的 HRP 过多	进一步稀释 HRP 二抗,减少样品使用量或改用低灵敏度显色剂
印迹膜具有棕色或黄色条带印 迹膜在暗室里发出光芒	系统中的 HRP 过多	进一步稀释 HRP 二抗 ,减少样品使用量或改用低灵敏度显色剂
信号迅速消失	系统中的 HRP 过多底 物并导致信号快速褪色	进一步稀释 HRP 二抗 ,减少样品使用量或改用低灵敏度显色剂
信号弱或没有信号	抗原或抗体的量不足	增加抗体或抗原的量或者使用更高灵敏度显色剂
	蛋白质转移效率低下	优化转移
	HRP 或底物活性低	通过在透明试管中制备 1-2 mL 底物工作溶液,在暗室中测试系统活性。关闭灯后,将 1 μL 未稀释的 HRP 二抗添加到工作溶液中。溶液应立即发出蓝光,在接下来的几分钟内会褪色。如果没有明显的光发射,则测试另一个 HRP 来源以确定根本原因。
	封闭不足	优化封闭条件
	不恰当的封闭试剂	尝试使用其他封闭剂
高背景	洗涤不足	增加洗涤的时间,次数或体积
	过度曝光的胶片	减少曝光时间或使用背景消除剂
	抗原或抗体浓度过高	减少抗原或抗体的数量
	抗体特异性差	尝试使用另外一种抗体
蛋白质带内的斑点	蛋白质转移效率低下	优化转移程序
	不均匀的水合膜	按照制造商建议适度地使膜水化
	薄膜和膜之间的气泡	在将印迹暴露于胶片之前去除气泡
胶片上有斑点的背景	HRP 二抗的聚集体形成	通过 0.2µm 过滤器过滤抗体
非特异性带	系统中的 HRP 过多	进一步稀释 HRP 二抗
	SDS 引起与蛋白质条带的非特异性结合	在 Western 印迹过程中不要使用 SDS
	抗体特异性差	尝试使用另外一种抗体

重要提示

产品用途: 仅供研究使用, 不适用于人或动物的体外诊断与治疗。

由于实验受多种因素影响具有不确定性,本说明书操作说明仅供参考,最终解释权归本公司所有。

警告!产品对人体危害性未知,请遵循操作说明。穿戴适当的防护眼镜、衣服和手套!

